A Conservative Discontinuous Galerkin Semi-Implicit Formulation for the Navier-Stokes Equations in Nonhydrostatic Mesoscale Modeling
نویسندگان
چکیده
A Discontinuous Galerkin (DG) finite element formulation is proposed for the solution of the compressible Navier–Stokes equations for a vertically stratified fluid, which are of interest in mesoscale nonhydrostatic atmospheric modeling. The resulting scheme naturally ensures conservation of mass, momentum and energy. A semi-implicit time integration approach is adopted to improve the efficiency of the scheme with respect to explicit Runge–Kutta time integration strategies usually employed in the context of DG formulations. A method is also presented to reformulate the resulting linear system as a pseudo-Helmholtz problem. In doing this, we obtain a DG discretization closely related to those proposed for the solution of elliptic problems, and we show how to take advantage of numerical integration to increase the efficiency of the solution algorithm. The resulting numerical formulation is then validated on a collection of classical two-dimensional test cases, including density driven flows and mountain wave simulations.
منابع مشابه
A study of spectral element and discontinuous Galerkin methods for the Navier-Stokes equations in nonhydrostatic mesoscale atmospheric modeling: Equation sets and test cases
We present spectral element (SE) and discontinuous Galerkin (DG) solutions of the Euler and compressible Navier– Stokes (NS) equations for stratified fluid flow which are of importance in nonhydrostatic mesoscale atmospheric modeling. We study three different forms of the governing equations using seven test cases. Three test cases involve flow over mountains which require the implementation of...
متن کاملDiscontinuous Galerkin BGK Method for Viscous Flow Equations: One-Dimensional Systems
This paper is about the construction of a BGK Navier–Stokes (BGK-NS) solver in the discontinuous Galerkin (DG) framework. Since in the DG formulation the conservative variables and their slopes can be updated simultaneously, the flow evolution in each element involves only the flow variables in the nearest neighboring cells. Instead of using the semidiscrete approach in the Runge–Kutta disconti...
متن کاملSemi-Implicit Formulations of the Navier--Stokes Equations: Application to Nonhydrostatic Atmospheric Modeling
We present semi-implicit (IMEX) formulations of the compressible Navier-Stokes equations (NSE) for applications in nonhydrostatic atmospheric modeling. The compressible NSE in nonhydrostatic atmospheric modeling include buoyancy terms that require special handling if one wishes to extract the Schur complement form of the linear implicit problem. We present results for five different forms of th...
متن کاملA conservative discontinuous Galerkin scheme for the 2D incompressible Navier-Stokes equations
In this paper we consider a conservative discretization of the two-dimensional incompressible Navier–Stokes equations. We propose an extension of Arakawa’s classical finite difference scheme for fluid flow in the vorticity-stream function formulation to a high order discontinuous Galerkin approximation. In addition, we show numerical simulations that demonstrate the accuracy of the scheme and v...
متن کاملHigh-order Discontinuous Galerkin Methods for Incompressible Flows
Abstract. The spatial discretization of the unsteady incompressible Navier-Stokes equations is stated as a system of Differential Algebraic Equations (DAEs), corresponding to the conservation of momentum equation plus the constraint due to the incompressibility condition. Runge-Kutta methods applied to the solution of the resulting index-2 DAE system are analyzed, allowing a critical comparison...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Scientific Computing
دوره 31 شماره
صفحات -
تاریخ انتشار 2009